Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464158

RESUMEN

Magnesium (Mg2+) uptake systems are present in all domains of life given the vital role of this ion. Bacteria acquire Mg2+ via conserved Mg2+ channels and transporters. The transporters are required for growth when Mg2+ is limiting or during bacterial pathogenesis, but, despite their significance, there are no known structures for these transporters. Here we report the first structure of the Mg2+ transporter MgtA solved by single particle cryo-electron microscopy (cryo-EM). Using mild membrane extraction, we obtained high resolution structures of both a homodimeric form (2.9 Å), the first for a P-type ATPase, and a monomeric form (3.6 Å). Each monomer unit of MgtA displays a structural architecture that is similar to other P-type ATPases with a transmembrane domain and two soluble domains. The dimer interface consists of contacts between residues in adjacent soluble nucleotide binding and phosphotransfer regions of the haloacid dehalogenase (HAD) domain. We suggest oligomerization is a conserved structural feature of the diverse family of P-type ATPase transporters. The ATP binding site and conformational dynamics upon nucleotide binding to MgtA were characterized using a combination of cryo-EM, molecular dynamics simulations, hydrogen-deuterium exchange mass spectrometry, and mutagenesis. Our structure also revealed a Mg2+ ion in the transmembrane segments, which, when combined with sequence conservation and mutagenesis studies, allowed us to propose a model for Mg2+ transport across the lipid bilayer. Finally, our work revealed the N-terminal domain structure and cytoplasmic Mg2+ binding sites, which have implications for related P-type ATPases defective in human disease.

2.
Nat Commun ; 15(1): 205, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177103

RESUMEN

Synapses are pivotal sites of plasticity and memory formation. Consequently, synapses are energy consumption hotspots susceptible to dysfunction when their energy supplies are perturbed. Mitochondria are stabilized near synapses via the cytoskeleton and provide the local energy required for synaptic plasticity. However, the mechanisms that tether and stabilize mitochondria to support synaptic plasticity are unknown. We identified proteins exclusively tethering mitochondria to actin near postsynaptic spines. We find that VAP, the vesicle-associated membrane protein-associated protein implicated in amyotrophic lateral sclerosis, stabilizes mitochondria via actin near the spines. To test if the VAP-dependent stable mitochondrial compartments can locally support synaptic plasticity, we used two-photon glutamate uncaging for spine plasticity induction and investigated the induced and adjacent uninduced spines. We find VAP functions as a spatial stabilizer of mitochondrial compartments for up to ~60 min and as a spatial ruler determining the ~30 µm dendritic segment supported during synaptic plasticity.


Asunto(s)
Actinas , Espinas Dendríticas , Actinas/metabolismo , Espinas Dendríticas/metabolismo , Plasticidad Neuronal , Sinapsis/metabolismo , Mitocondrias/metabolismo
3.
Cell Chem Biol ; 31(4): 683-698.e7, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38151019

RESUMEN

Mycobacterial bioenergetics is a validated target space for antitubercular drug development. Here, we identify BB2-50F, a 6-substituted 5-(N,N-hexamethylene)amiloride derivative as a potent, multi-targeting bioenergetic inhibitor of Mycobacterium tuberculosis. We show that BB2-50F rapidly sterilizes both replicating and non-replicating cultures of M. tuberculosis and synergizes with several tuberculosis drugs. Target identification experiments, supported by docking studies, showed that BB2-50F targets the membrane-embedded c-ring of the F1Fo-ATP synthase and the catalytic subunit (substrate-binding site) of succinate dehydrogenase. Biochemical assays and metabolomic profiling showed that BB2-50F inhibits succinate oxidation, decreases the activity of the tricarboxylic acid (TCA) cycle, and results in succinate secretion from M. tuberculosis. Moreover, we show that the lethality of BB2-50F under aerobic conditions involves the accumulation of reactive oxygen species. Overall, this study identifies BB2-50F as an effective inhibitor of M. tuberculosis and highlights that targeting multiple components of the mycobacterial respiratory chain can produce fast-acting antimicrobials.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Succinato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/farmacología , Antituberculosos/química , Tuberculosis/tratamiento farmacológico , Adenosina Trifosfato , Inhibidores Enzimáticos/farmacología , Succinatos
4.
Cell ; 186(24): 5411-5427.e23, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37918396

RESUMEN

Neurons build synaptic contacts using different protein combinations that define the specificity, function, and plasticity potential of synapses; however, the diversity of synaptic proteomes remains largely unexplored. We prepared synaptosomes from 7 different transgenic mouse lines with fluorescently labeled presynaptic terminals. Combining microdissection of 5 different brain regions with fluorescent-activated synaptosome sorting (FASS), we isolated and analyzed the proteomes of 18 different synapse types. We discovered ∼1,800 unique synapse-type-enriched proteins and allocated thousands of proteins to different types of synapses (https://syndive.org/). We identify shared synaptic protein modules and highlight the proteomic hotspots for synapse specialization. We reveal unique and common features of the striatal dopaminergic proteome and discover the proteome signatures that relate to the functional properties of different interneuron classes. This study provides a molecular systems-biology analysis of synapses and a framework to integrate proteomic information for synapse subtypes of interest with cellular or circuit-level experiments.


Asunto(s)
Encéfalo , Proteoma , Sinapsis , Animales , Ratones , Encéfalo/metabolismo , Ratones Transgénicos , Proteoma/metabolismo , Proteómica , Sinapsis/metabolismo , Sinaptosomas/metabolismo
5.
Anal Chem ; 95(32): 11892-11900, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37535005

RESUMEN

Small proteins of around 50 aa in length have been largely overlooked in genetic and biochemical assays due to the inherent challenges with detecting and characterizing them. Recent discoveries of their critical roles in many biological processes have led to an increased recognition of the importance of small proteins for basic research and as potential new drug targets. One example is CcoM, a 36 aa subunit of the cbb3-type oxidase that plays an essential role in adaptation to oxygen-limited conditions in Pseudomonas stutzeri (P. stutzeri), a model for the clinically relevant, opportunistic pathogen Pseudomonas aeruginosa. However, as no comprehensive data were available in P. stutzeri, we devised an integrated, generic approach to study small proteins more systematically. Using the first complete genome as basis, we conducted bottom-up proteomics analyses and established a digest-free, direct-sequencing proteomics approach to study cells grown under aerobic and oxygen-limiting conditions. Finally, we also applied a proteogenomics pipeline to identify missed protein-coding genes. Overall, we identified 2921 known and 29 novel proteins, many of which were differentially regulated. Among 176 small proteins 16 were novel. Direct sequencing, featuring a specialized precursor acquisition scheme, exhibited advantages in the detection of small proteins with higher (up to 100%) sequence coverage and more spectral counts, including sequences with high proline content. Three novel small proteins, uniquely identified by direct sequencing and not conserved beyond P. stutzeri, were predicted to form an operon with a conserved protein and may represent de novo genes. These data demonstrate the power of this combined approach to study small proteins in P. stutzeri and show its potential for other prokaryotes.


Asunto(s)
Proteogenómica , Pseudomonas stutzeri , Pseudomonas stutzeri/genética , Proteómica , Pseudomonas aeruginosa/genética , Oxígeno
6.
Science ; 380(6647): eadf2018, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37228199

RESUMEN

The proteasome, the major protein-degradation machine in cells, regulates neuronal synapses and long-term information storage. Here, using super-resolution microscopy, we found that the two essential subcomplexes of the proteasome, the regulatory (19S) and catalytic (20S) particles, are differentially distributed within individual rat cortical neurons. We discovered an unexpected abundance of free 19S particles near synapses. The free neuronal 19S particles bind and deubiquitylate lysine 63-ubiquitin (Lys63-ub), a non-proteasome-targeting ubiquitin linkage. Pull-down assays revealed a significant overrepresentation of synaptic molecules as Lys63-ub interactors. Inhibition of the 19S deubiquitylase activity significantly altered excitatory synaptic transmission and reduced the synaptic availability of AMPA receptors at multiple trafficking points in a proteasome-independent manner. Together, these results reveal a moonlighting function of the regulatory proteasomal subcomplex near synapses.


Asunto(s)
Neuronas , Complejo de la Endopetidasa Proteasomal , Sinapsis , Animales , Ratas , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Sinapsis/metabolismo , Ubiquitina/metabolismo , Lisina/metabolismo , Transmisión Sináptica
7.
Proteomics ; 23(10): e2200138, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36790022

RESUMEN

Chlorobaculum tepidum is an anaerobic green sulfur bacterium which oxidizes sulfide, elemental sulfur, and thiosulfate for photosynthetic growth. It can also oxidize sulfide to produce extracellular S0 globules, which can be further oxidized to sulfate and used as an electron donor. Here, we performed label-free quantitative proteomics on total cell lysates prepared from different metabolic states, including a sulfur production state (10 h post-incubation [PI]), the beginning of sulfur consumption (20 h PI), and the end of sulfur consumption (40 h PI), respectively. We observed an increased abundance of the sulfide:quinone oxidoreductase (Sqr) proteins in 10 h PI indicating a sulfur production state. The periplasmic thiosulfate-oxidizing Sox enzymes and the dissimilatory sulfite reductase (Dsr) subunits showed an increased abundance in 20 h PI, corresponding to the sulfur-consuming state. In addition, we found that the abundance of the heterodisulfide-reductase and the sulfhydrogenase operons was influenced by electron donor availability and may be associated with sulfur metabolism. Further, we isolated and analyzed the extracellular sulfur globules in the different metabolic states to study their morphology and the sulfur cluster composition, yielding 58 previously uncharacterized proteins in purified globules. Our results show that C. tepidum regulates the cellular levels of enzymes involved in sulfur metabolism in response to the availability of reduced sulfur compounds.


Asunto(s)
Chlorobi , Proteómica , Azufre , Chlorobi/metabolismo , Oxidación-Reducción , Proteómica/métodos , Sulfuros/metabolismo , Azufre/metabolismo , Tiosulfatos/metabolismo , Fotosíntesis
8.
Nat Struct Mol Biol ; 30(3): 321-329, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36782049

RESUMEN

Mycoplasma pneumoniae, responsible for approximately 30% of community-acquired human pneumonia, needs to extract lipids from the host environment for survival and proliferation. Here, we report a comprehensive structural and functional analysis of the previously uncharacterized protein P116 (MPN_213). Single-particle cryo-electron microscopy of P116 reveals a homodimer presenting a previously unseen fold, forming a huge hydrophobic cavity, which is fully accessible to solvent. Lipidomics analysis shows that P116 specifically extracts lipids such as phosphatidylcholine, sphingomyelin and cholesterol. Structures of different conformational states reveal the mechanism by which lipids are extracted. This finding immediately suggests a way to control Mycoplasma infection by interfering with lipid uptake.


Asunto(s)
Adhesinas Bacterianas , Mycoplasma pneumoniae , Humanos , Microscopía por Crioelectrón , Mycoplasma pneumoniae/metabolismo , Lípidos , Colesterol/metabolismo
9.
Biochim Biophys Acta Bioenerg ; 1864(2): 148953, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36572329

RESUMEN

The multi-subunit membrane protein complex photosystem II (PSII) catalyzes the light-driven oxidation of water and with this the initial step of photosynthetic electron transport in plants, algae, and cyanobacteria. Its biogenesis is coordinated by a network of auxiliary proteins that facilitate the stepwise assembly of individual subunits and cofactors, forming various intermediate complexes until fully functional mature PSII is present at the end of the process. In the current study, we purified PSII complexes from a mutant line of the thermophilic cyanobacterium Thermosynechococcus vestitus BP-1 in which the extrinsic subunit PsbO, characteristic for active PSII, was fused with an N-terminal Twin-Strep-tag. Three distinct PSII complexes were separated by ion-exchange chromatography after the initial affinity purification. Two complexes differ in their oligomeric state (monomeric and dimeric) but share the typical subunit composition of mature PSII. They are characterized by the very high oxygen evolving activity of approx. 6000 µmol O2·(mg Chl·h)-1. Analysis of the third (heterodimeric) PSII complex revealed lower oxygen evolving activity of approx. 3000 µmol O2·(mg Chl·h)-1 and a manganese content of 2.7 (±0.2) per reaction center compared to 3.7 (±0.2) of fully active PSII. Mass spectrometry and time-resolved fluorescence spectroscopy further indicated that PsbO is partially replaced by Psb27 in this PSII fraction, thus implying a role of this complex in PSII repair.


Asunto(s)
Cianobacterias , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/química , Cianobacterias/metabolismo , Oligopéptidos/metabolismo , Oxígeno/metabolismo
10.
Methods Mol Biol ; 2603: 1-17, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36370266

RESUMEN

Cellular protein turnover-the net result of protein synthesis and degradation-is crucial to maintain protein homeostasis and cellular function under steady-state conditions and to enable cells to remodel their proteomes upon a perturbation. In brain cells, proteins are continuously turned over at different rates depending on various factors including cell type, subcellular localization, cellular environment, and neuronal activity. Here we describe a workflow for the analysis of protein synthesis, degradation, and turnover in primary cultured rat neurons and glia using dynamic/pulsed SILAC and mass spectrometry.


Asunto(s)
Neuroglía , Proteoma , Ratas , Animales , Proteoma/metabolismo , Proteolisis , Neuroglía/metabolismo , Neuronas/metabolismo , Espectrometría de Masas , Marcaje Isotópico/métodos
11.
Sci Adv ; 8(47): eadc9952, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36427319

RESUMEN

Mitochondrial complex I is a redox-driven proton pump that generates proton-motive force across the inner mitochondrial membrane, powering oxidative phosphorylation and ATP synthesis in eukaryotes. We report the structure of complex I from the thermophilic fungus Chaetomium thermophilum, determined by cryoEM up to 2.4-Å resolution. We show that the complex undergoes a transition between two conformations, which we refer to as state 1 and state 2. The conformational switch is manifest in a twisting movement of the peripheral arm relative to the membrane arm, but most notably in substantial rearrangements of the Q-binding cavity and the E-channel, resulting in a continuous aqueous passage from the E-channel to subunit ND5 at the far end of the membrane arm. The conformational changes in the complex interior resemble those reported for mammalian complex I, suggesting a highly conserved, universal mechanism of coupling electron transport to proton pumping.

12.
Comput Struct Biotechnol J ; 20: 5430-5439, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212541

RESUMEN

Nicotinamide nucleotide transhydrogenases are integral membrane proteins that utilizes the proton motive force to reduce NADP+ to NADPH while converting NADH to NAD+. Atomic structures of various transhydrogenases in different ligand-bound states have become available, and it is clear that the molecular mechanism involves major conformational changes. Here we utilized hydrogen/deuterium exchange mass spectrometry (HDX-MS) to map ligand binding sites and analyzed the structural dynamics of E. coli transhydrogenase. We found different allosteric effects on the protein depending on the bound ligand (NAD+, NADH, NADP+, NADPH). The binding of either NADP+ or NADPH to domain III had pronounced effects on the transmembrane helices comprising the proton-conducting channel in domain II. We also made use of cyclic ion mobility separation mass spectrometry (cyclic IMS-MS) to maximize coverage and sensitivity in the transmembrane domain, showing for the first time that this technique can be used for HDX-MS studies. Using cyclic IMS-MS, we increased sequence coverage from 68 % to 73 % in the transmembrane segments. Taken together, our results provide important new insights into the transhydrogenase reaction cycle and demonstrate the benefit of this new technique for HDX-MS to study ligand binding and conformational dynamics in membrane proteins.

13.
J Am Soc Mass Spectrom ; 33(7): 1293-1302, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35758524

RESUMEN

Identification and sequence determination by mass spectrometry have become routine analyses for soluble proteins. Membrane proteins, however, remain challenging targets due to their hydrophobicity and poor annotation. In particular small membrane proteins often remain unnoticed as they are largely inaccessible to Bottom-Up proteomics. Recent advances in structural biology, though, have led to multiple membrane protein complex structures being determined at sufficiently high resolution to detect uncharacterized, small subunits. In this work we offer a guide for the mass spectrometric characterization of solvent extraction-based purifications of small membrane proteins isolated from protein complexes and cellular membranes. We first demonstrate our Top-Down MALDI-MS/MS approach on a Photosystem II preparation, analyzing target protein masses between 2.5 and 9 kDa with high accuracy and sensitivity. Then we apply our technique to purify and sequence the mycobacterial ATP synthase c subunit, the molecular target of the antibiotic drug bedaquiline. We show that our approach can be used to directly track and pinpoint single amino acid mutations that lead to antibiotic resistance in only 4 h. While not applicable as a high-throughput pipeline, our MALDI-MS/MS and ISD-based approach can identify and provide valuable sequence information on small membrane proteins, which are inaccessible to conventional Bottom-Up techniques. We show that our approach can be used to unambiguously identify single-point mutations leading to antibiotic resistance in mycobacteria.


Asunto(s)
Proteínas de la Membrana , Espectrometría de Masas en Tándem , Proteómica/métodos , Análisis de Secuencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem/métodos
14.
Nat Commun ; 13(1): 1224, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264577

RESUMEN

During the co-translational assembly of protein complexes, a fully synthesized subunit engages with the nascent chain of a newly synthesized interaction partner. Such events are thought to contribute to productive assembly, but their exact physiological relevance remains underexplored. Here, we examine structural motifs contained in nucleoporins for their potential to facilitate co-translational assembly. We experimentally test candidate structural motifs and identify several previously unknown co-translational interactions. We demonstrate by selective ribosome profiling that domain invasion motifs of beta-propellers, coiled-coils, and short linear motifs may act as co-translational assembly domains. Such motifs are often contained in proteins that are members of multiple complexes (moonlighters) and engage with closely related paralogs. Surprisingly, moonlighters and paralogs assemble co-translationally in only some but not all of the relevant biogenesis pathways. Our results highlight the regulatory complexity of assembly pathways.


Asunto(s)
Proteínas , Ribosomas , Biosíntesis de Proteínas , Dominios Proteicos , Proteínas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
15.
Commun Biol ; 5(1): 166, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210534

RESUMEN

Increasing antimicrobial resistance compels the search for next-generation inhibitors with differing or multiple molecular targets. In this regard, energy conservation in Mycobacterium tuberculosis has been clinically validated as a promising new drug target for combatting drug-resistant strains of M. tuberculosis. Here, we show that HM2-16F, a 6-substituted derivative of the FDA-approved drug amiloride, is an anti-tubercular inhibitor with bactericidal properties comparable to the FDA-approved drug bedaquiline (BDQ; Sirturo®) and inhibits the growth of bedaquiline-resistant mutants. We show that HM2-16F weakly inhibits the F1Fo-ATP synthase, depletes ATP, and affects the entry of acetyl-CoA into the Krebs cycle. HM2-16F synergizes with the cytochrome bcc-aa3 oxidase inhibitor Q203 (Telacebec) and co-administration with Q203 sterilizes in vitro cultures in 14 days. Synergy with Q203 occurs via direct inhibition of the cytochrome bd oxidase by HM2-16F. This study shows that amiloride derivatives represent a promising discovery platform for targeting energy generation in drug-resistant tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Adenosina Trifosfato , Amilorida/farmacología , Antituberculosos/farmacología , Citocromos , Complejo IV de Transporte de Electrones/metabolismo , Mycobacterium tuberculosis/metabolismo , Oxidorreductasas
16.
STAR Protoc ; 3(1): 101063, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35005645

RESUMEN

Cellular processes require tight and coordinated control of protein abundance, localization, and activity. One of the core mechanisms to achieve specific regulation of proteins is protein phosphorylation. Here we present a workflow to monitor protein abundance and phosphorylation in primary cultured neurons using liquid chromatography-coupled mass spectrometry. Our protocol provides a detailed guide on all steps for detection and label-free-quantification of phosphorylated and unmodified proteins of primary cortical neurons, including primary cell culture, phosphoproteomic sample preparation and data-processing, and evaluation. For complete details on the use and execution of this protocol, please refer to Desch et al. (2021).


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Neuronas/química , Fosforilación , Proteínas/análisis , Proteómica/métodos
17.
J Bacteriol ; 204(1): e0035321, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34748388

RESUMEN

Small proteins of up to ∼50 amino acids are an abundant class of biomolecules across all domains of life. Yet due to the challenges inherent in their size, they are often missed in genome annotations, and are difficult to identify and characterize using standard experimental approaches. Consequently, we still know few small proteins even in well-studied prokaryotic model organisms. Mass spectrometry (MS) has great potential for the discovery, validation, and functional characterization of small proteins. However, standard MS approaches are poorly suited to the identification of both known and novel small proteins due to limitations at each step of a typical proteomics workflow, i.e., sample preparation, protease digestion, liquid chromatography, MS data acquisition, and data analysis. Here, we outline the major MS-based workflows and bioinformatic pipelines used for small protein discovery and validation. Special emphasis is placed on highlighting the adjustments required to improve detection and data quality for small proteins. We discuss both the unbiased detection of small proteins and the targeted analysis of small proteins of interest. Finally, we provide guidelines to prioritize novel small proteins, and an outlook on methods with particular potential to further improve comprehensive discovery and characterization of small proteins.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Espectrometría de Masas/métodos , Archaea/genética , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Bacterias/genética , Proteínas Bacterianas/genética , Biología Computacional , Regulación de la Expresión Génica Arqueal/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología
18.
iScience ; 24(12): 103524, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34934933

RESUMEN

Dimerization of Taspase1 activates an intrinsic serine protease function that leads to the catalytic Thr234 residue, which allows to catalyze the consensus sequence Q-3X-2D-1⋅G1X2D3D4, present in Trithorax family members and TFIIA. Noteworthy, Taspase1 performs only a single hydrolytic step on substrate proteins, which makes it impossible to screen for inhibitors in a classical screening approach. Here, we report the development of an HTRF reporter assay that allowed the identification of an inhibitor, Closantel sodium, that inhibits Taspase1 in a noncovalent fashion (IC50 = 1.6 µM). The novel inhibitor interferes with the dimerization step and/or the intrinsic serine protease function of the proenzyme. Of interest, Taspase1 is required to activate the oncogenic functions of the leukemogenic AF4-MLL fusion protein and was shown in several studies to be overexpressed in many solid tumors. Therefore, the inhibitor may be useful for further validation of Taspase1 as a target for cancer therapy.

19.
Nat Commun ; 12(1): 6127, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675203

RESUMEN

Owing to their morphological complexity and dense network connections, neurons modify their proteomes locally, using mRNAs and ribosomes present in the neuropil (tissue enriched for dendrites and axons). Although ribosome biogenesis largely takes place in the nucleus and perinuclear region, neuronal ribosomal protein (RP) mRNAs have been frequently detected remotely, in dendrites and axons. Here, using imaging and ribosome profiling, we directly detected the RP mRNAs and their translation in the neuropil. Combining brief metabolic labeling with mass spectrometry, we found that a group of RPs rapidly associated with translating ribosomes in the cytoplasm and that this incorporation was independent of canonical ribosome biogenesis. Moreover, the incorporation probability of some RPs was regulated by location (neurites vs. cell bodies) and changes in the cellular environment (following oxidative stress). Our results suggest new mechanisms for the local activation, repair and/or specialization of the translational machinery within neuronal processes, potentially allowing neuronal synapses a rapid means to regulate local protein synthesis.


Asunto(s)
Neuronas/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Animales , Axones/metabolismo , Células Cultivadas , Femenino , Masculino , Neuritas/metabolismo , Neurópilo/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Ribosómicas/genética , Ribosomas/genética
20.
Cell Rep ; 36(8): 109583, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433048

RESUMEN

Homeostatic synaptic scaling allows for bi-directional adjustment of the strength of synaptic connections in response to changes in their input. Protein phosphorylation modulates many neuronal processes, but it has not been studied on a global scale during synaptic scaling. Here, we use liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses to measure changes in the phosphoproteome in response to up- or down-scaling in cultured cortical neurons over minutes to 24 h. Of ~45,000 phosphorylation events, ~3,300 (associated with 1,285 phosphoproteins) are regulated by homeostatic scaling. Activity-sensitive phosphoproteins are predominantly located at synapses and involved in cytoskeletal reorganization. We identify many early phosphorylation events that could serve as sensors for the activity offset as well as late and/or persistent phosphoregulation that could represent effector mechanisms driving the homeostatic response. Much of the persistent phosphorylation is reciprocally regulated by up- or down-scaling, suggesting that mechanisms underlying these two poles of synaptic regulation make use of a common signaling axis.


Asunto(s)
Homeostasis/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Cromatografía Liquida/métodos , Potenciales Postsinápticos Excitadores/fisiología , Fosforilación , Receptores AMPA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA